云南数量关系

首页 > 国家公务员考试 > 备考资料 > 行测资料 > 数量关系

2022国家公务员考试数量关系:赋值法巧解工程问题

直属分院 | 2021-07-12 14:39

收藏

2022年国家公务员备考精选文章

↓↓↓↓2021年省公务员考试面试产品推荐↓↓↓↓
2021省考
考试公告
2021省考
面试真题
2021省面
笔试课程
 

  在公务员行测考试中,工程问题一直都是很重要的考点,其中赋值法更是重中之重,那么接下来我们就一起看下如何用赋值法巧解工程问题。

2022国/省考公务员考点诊断班 推荐
2022年云南省考点诊断班(3期) 推荐
2022更新升级【国考】用书合辑 (教材、题库)

  题型一:给定时间型

  特征:当题目条件只涉及完成工作所需时间时,我们称之为给定时间型的工程问题。

  技巧:在解这类题目时,我们一般是先赋值工作总量,进而根据时间求出效率,最后解决问题。

  接下来我们通过例题来解读一下:

  【例1】一项工程由甲单独做需要15天做完,乙单独做需要12天做完,二人合作4天后,剩下的工程由甲单独做,还需要( )天完成。

  A.6 B.8

  C.9 D.5

  【答案】A

  【华图点拨】题中只给出了甲、乙单独完成工作所需的时间,而关于工作的总量和效率并未直接给出,故无法直接求解问题,所以我们在此使用一个赋值的思维来解题。

  由于工作总量是两人共用的不变的量,故先将其赋值为两人各自单独完成工作时间(15、12)的最小公倍数60,然后再通过已知时间求解出两人各自的效率分别为4和5,具体如下:

  此时,两人合作4天可完成的工作量为(4+5)×4=36,剩下的工作量为60-36-24,若由甲单独做,所需时间为24÷4=6天。因此选择A。

  通过此题,我们可以发现,给定时间型的题目,通过赋总量求效率最后看问题的步骤,即可快速解题。这里需要注意没有将工作总量赋值为1,是因为这样求出的效率为分数,增加了后续的计算难度,故我们在赋值工作总量时要使其为时间的公倍数更好。

  【例2】(2017国家)工厂有5条效率不同的生产线。某个生产项目如果任选3条生产线一起加工,最快需要6天整,最慢需要12天整;5条生产线一起加工,则需要5天整。问如果所有生产线的产能都扩大一倍,任选2条生产线一起加工最多需要多少天完成?

  A.11 B.13

  C.15 D.30

  【答案】C

  【华图点拨】题中条件只给出了不同生产线完成工作所需时间,故该题依然属于给定时间型的题目。根据解题步骤,我们先赋值工作总量为完成时间(6、12、5)的最小公倍数60,进而求解出相关生产线的效率数据,具体如下:

  由于工作总量不变,若使2条生产线加工天数最多,则应选择2条效率最低的生产线合作。根据题目,最慢2条生产线的效率=5条线效率-最快3条线效率,即12-10=2,产能扩大一倍后,最慢2条生产线效率变为2×2=4,因此所需时间为60÷4=15天。因此选择C。

  题型二:效率制约型

  特征:当题目条件除了给定完成工作所需时间外,还给出了效率的比例关系,此时我们称之为效率制约型的工程问题。

  技巧:在解这类题目时,我们一般是先赋值工作效率,进而根据时间求出工作总量,最后解决问题。

  接下来我们通过例题来解读一下:

  【例3】(2016国家)某浇水装置可根据天气阴晴调节浇水量,晴天浇水量为阴雨天的2.5倍。灌满该装置的水箱后,在连续晴天的情况下可为植物自动浇水18天。小李6月1日0:00灌满水箱后,7月1日0:00正好用完。问6月有多少个阴雨天?

  A.10 B.16

  C.18 D.20

  【答案】D

  【华图点拨】题中给出了晴天阴雨天的浇水效率,还给出了连续晴天可浇水18天,除此之外再没有别的条件。若想求出问题,我们需要知道总水量即工作总量,还需要知道浇水效率方可解题。

  先根据效率关系,赋值阴雨天的浇水效率为2,晴天的浇水效率为2×2.5=5,总浇水量为5×18=90,而6月总共30天,可设阴雨天有x天,晴天则为(30-x)天,根据工作总量=效率×时间,可列方程90=2x+(30-x)×5,解得x=20,故6月有20个阴雨天。因此选择D。

  通过上题可见,若题中给了效率比例关系,我们就先赋值效率,然后根据完成工作时间求出总量,最后得到问题答案。除此之外,效率制约型还有一种题型,就是题中并未直接给出效率比例关系,而是通过完成部分工作量的时间,来间接得到效率的比例关系,具体如下:

  【例4】(2019国家)有甲、乙、丙三个工作组,已知乙组2天的工作量与甲、丙共同工作1天的工作量相同。A工程如由甲、乙组共同工作3天,再由乙、丙组共同工作7天,正好完成。如果三组共同完成,需要整7天。B工程如丙组单独完成正好需要10天,问如由甲、乙组共同完成,需要多少天?

  A.不到6天 B.6天多

  C.7天多 D.超过8天

  【答案】C

  【华图点拨】题中看似给出的条件均为时间,但前半部分为完成部分工作量,而并非整个工作,故此题并非为时间型而是属于效率型题目,需要我们通过时间来得到效率的比例关系。根据题意,可得如下等式:

  2乙=甲+丙…①

  3(甲+乙)+7(乙+丙)=7(甲+乙+丙)…②

  整理②式可得,3乙=4甲,即甲:乙=3:4,故赋值甲的效率为3,乙的效率为4,代入①式,可得丙的效率为5。由于B工程由丙单独完成需要10天,可知B工程总量为5×10=50,若仅由甲乙合作完成,需要50÷(3+4)=7天多。因此选择C。

  通过4个例题,给大家详细讲解了一下什么样的工程问题使用赋值法求解,以及求解的步骤方法,后续做题希望大家可以多思考多总结,彻底拿下工程问题。


 

【2022国考基础6本套】教材+真题+同步练习册推荐 公务员面试-无领导小组讨论实况模拟视频¥0.0 【云南】2022国考笔试刷题计划¥0.1
2022国家公务员6本套+2021考前必做1000题6本 12本套 2021云南省考独当一面大礼包专岗专训¥0.1 国/省公务员笔试 云南暑假计划¥0.1

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有