云南试题资料

首页 > 云南大学生村官考试 > 试题资料

行测辅导:数量关系“数列试错”实例详解

未知 | 2012-07-05 14:57

收藏

 

    在讲述“数列试错”的概念之前,我们先看看以下三个例子:


    【例1】1,2,(),67,131。


    A.6    B.10    C.18    D.24


    【例2】1,2,(),22,86。


    A.6    B.10    C.18    D.24


    【例3】1,2,(),37,101。


    A.6    B.10    C.18    D.24


    【分析】以上三道题目的题干当中都含有五个数字,并且未知项都在正中间。因此,如果数列当中相邻数字两两作差,得到的次生数列(这个概念后面章节马上会讲到)当中的四个数中,中间两个是不知道的,需要我们“先猜后验”从而得到最终答案。巧合的是,以上三题两两作差得到同样的次生数列:


    1,(),(),64


    【例1解析】如果猜测该次生数列是一个等差数列,则应为形式:1,22,43,64,从而得到例1的答案,选择D:(提示:原数列两两之间做差)


    【例2解析】如果猜测该次生数列是一个等比数列,则应为形式:1,4,16,64,从而得到例2的答案,选择A:(提示:原数列两两之间做差)


    【例3解析】如果猜测该次生数列是一个立方数列,则应为形式:1,8,27,64,从而得到例3的答案,选择B:(提示:原数列两两之间做差)


    【总结】例1~例3都是通过“相邻两项两两做差”得到同样的“次生数列”从而得到答案的,然而对这个“次生数列”的三种不同“猜测”分别对应以上三个不同的例题,其对应性需要我们进行“验算”来确定。因此,这三个例题告诉我们一个非常重要的道理:在考场上,我们需要进行很多大胆的“尝试”,但并非每一次尝试都会成功,有时候我们需要通过“数列试错”来剔除错误答案,并最终得到正确答案。

 

分享到

微信咨询

微信中长按识别二维码 咨询客服

全部资讯

copyright ©2006-2020 华图教育版权所有